数学之美——赌博与概率
2025-10-13有一回,齐威王和田忌赛马。 他们把马分成上、中、下三等,上等马对上等马,以此类推。田忌每个等次的马都比齐威王的慢,因此,三个回合下来,田忌都败了。一旁观战的朋友孙膑给他支招,于是田忌又向齐威王发出挑战,齐威王答应了。赛马又开始了。田忌先用下等马对齐威王的上等马,再用上等马对齐威王的中等马,又用自己的中等马对齐威王的下等马。田忌以两胜一负的成绩胜了齐威王。这是一个大家耳熟能详的小故事,其中齐王与田忌赛马的故事就蕴含着概率的原理。
现在假设玩家可以随意决定下注多少且下注额可无限分割,但是最小下注额为1元,那么根据凯利规则可知,第一局下注2.8元(100*(0.514-0.486)),如果赢了,现在有102.8元,继续下注102.8*0.028=2.8784元;如果输了,现在有97.2元,继续下注2.7216元。采用这一下注规则,第一,我们可以尽量降低全部输光的可能性;第二,这种方法能获得最高的期望收益;第三,利用这种方法能最快达成目标赢钱数。
概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力, 概率论在数学中地位基本确立。 到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天,概率论已经成为一个非常庞大的数学分支。从概率论的起源和发展看,概论都与赌博问题息息相关,可以说对于概率论的研究正是起源于赌博问题,同时赌博问题中也有很多概率问题值得我们研究。本文将要利用概率论的知识研究赌博中包含的一些问题,揭示赌博的内在机制。